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Abstract. The ‘Nishimori line’ is a line or hypersurface in the parameter space of systems
with quenched disorder, where simple expressions of the averages of physical quantities over the
quenched random variables are obtained. It has been playing an important role in the theoretical
studies of the random frustrated systems since its discovery in around 1980. In this paper, an
interpretation of the Nishimori line from the viewpoint of statistical information processing is
developed. Our main aim is the reconstruction of the whole theory of the Nishimori line from
the viewpoint of Bayesian statistics, or, almost equivalently, from the viewpoint of the theory of
error-correcting codes. As a byproduct of the interpretation, counterparts of the Nishimori line in
models without gauge invariance are given. We also discussed the issues on the ‘finite-temperature
decoding’ of error-correcting codes and clarify the role of gauge invariance in this topic.

1. Introduction

There are not many rigorous results that are useful for the study of random frustrated systems.
Among them, theorems related to the Nishimori line of random spin models form an important
family. There have been many papers [1–5] about the Nishimori line after the seminal paper [1]
of Nishimori. There is, however, still a mystery about the Nishimori line, i.e., its physical
meaning and the motivation behind the proof are not yet clear.

The purpose of this paper is to develop an interpretation on the Nishimori line from the
viewpoint of statistical information processing, more specifically from Bayesian statistics or
from the coding theory. This interpretation has two advantages. First, it gives an interesting
example of an unexpected relation between two different areas, rigorous arguments in the
statistical physics and Bayesian statistics, and elucidates the meaning of the trick in the
derivation of the Nishimori line. Secondly, it gives some new results on the analogue of
the Nishimori line withoutgauge invariancein the sense of Toulouse [6].

Our arguments are closely related to the works on the ‘the optimality of finite-temperature
decoding’ of error-correcting codes [7–10] . These works, however, mostly focused on the
decoding of error-correcting codes itself. Our aim here is to develop the idea suggested in these
studies and discuss the whole theory of the Nishimori line from the viewpoint of statistical
inference. We will also give a comprehensive treatment on the finite-temperature decoding in
the latter part of the paper.

In this paper, we make efforts to give a self-contained description of this material. No
special knowledge on Bayesian statistics, error-correcting codes and gauge invariance of spin
glass is assumed.

† E-mail address:iba@ism.ac.jp
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2. Bayesian framework

In this section, we give basic notions and terminology of Bayesian statistics. We also discuss
identities and inequalities that naturally arise from the Bayesian framework. Although the
motivation for these formulae as well as their proofs are quite simple, they are essential in the
derivation of the properties of the Nishimori line.

Let us assume that the datay is generated by a probability distributionp(y|x), which is
parametrized by the value of an unknown variablex. In the Bayesian framework, we also
assume that the parameterx is, in itself, a random sample from aprior distributionπ(x). With
these assumptions, the probability distribution of the parameterx conditioned on given datay
is

p(x|y) = p(y|x)π(x)∑
x p(y|x)π(x)

. (1)

Here
∑

x means the summation or integral over the possible values ofx. This distribution, the
posterior distribution, is the source of knowledge with given datay in the Bayesian formalism.

A similar formalism is also used in a seemingly different branch of information science:
the theory of error-correcting codes. Consider a noisy channel and a set of messages. We
encode and send a messagex through the noisy channel and someone at the other end of the
channel tries to infer the original messagex from the outputy. If we assume that the probability
p(y|x) of an outputy with the inputx and the distributionπ(x) of the average frequencies of
input messages, the conditional probabilityp(x|y) of an inputx with the outputy is given by
(1). Note that the probabilityp(y|x) represents the coding scheme as well as the noise of the
channel in this formalism.

We will introduce notations that indicate the averages over different types of distributions.
Here the symbolA(x) denotes a function of the parameterx andB(y) denotes a function of
the datay . First we define the average over the prior distribution ofx,

[A(x)]π(x) =
∑
x

A(x)π(x). (2)

We also define the average over the posterior distribution ofx,

〈A(x)〉p(x|y) =
∑
x

A(x)p(x|y). (3)

Finally we define the average over the probability distributionp(y|x) of datay with the given
parameterx,

[B(y)]p(y|x) =
∑
y

B(y)p(y|x). (4)

These notations are not common in the literatures on Bayesian statistics. They are introduced
to contrast the analogy to the statistical physics of systems with quenched disorder. Later we
show that the averages [ ] correspond to the quenched average over the configuration of the
impurities and〈 〉 corresponds to the thermal average.

Let us consider relations among these averages. First we note that an identity

[〈A(x ′)〉p(x ′|y)]p(y|x)]π(x) = [A(x)]π(x) (5)

holds. The posterior average〈A(x ′)〉p(x ′|y) can be regarded as an estimate ofA(x) from the
datay. It is a random variable dependent ony and the identity (5) shows that the average of
it over the possible values of the datay and the original parameterx coincides with the prior
average [A(x)]π(x). The proof of the formula (5) is straightforward. When we substitute the
left-hand side of (5) for the definition of the averages (3), (4), (2), we obtain the expression,

[〈A(x ′)〉p(x ′|y)]p(y|x)]π(x) =
∑
x

∑
y

∑
x ′ A(x

′)p(y|x ′)π(x ′)∑
x ′ p(y|x ′)π(x ′)

· p(y|x)π(x). (6)
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By changing the order of the summation and a dummy index, we can show that the factors∑
x p(y|x)π(x) in the numerator and denominator cancel each other. Using

∑
y p(y|x ′) = 1

and
∑

x ′ A(x
′)π(x ′) = [A(x)]π(x), the proof of (5) is completed.

It is easy to generalize (5) to an identity

[〈C(x ′, y)〉p(x ′|y)]p(y|x)]π(x) = [[C(x, y)]p(y|x)]π(x). (7)

HereC(x, y) is a function of the data (the output of the channel)y as well as the parameter
x. The proof of the relation (7) is essentially the same as that of (5). The only difference from
(5) is that the average [ ]p(y|x) in the right-hand side cannot be removed.

In these arguments, we assume that the ‘true’ distributionsp(y|x) andπ(x) behind given
data are exactly known. They are, however, often unknown in a real world example. A way to
fill this gap is to include ‘hyperparameters’α andγ in the expression ofp(y|x) andπ(x) and
estimate them from the data. Hereafter we use the notationpα(y|x) andπγ (x) to indicate the
distributions that contain hyperparameters. An approach to estimate hyperparametersα and
γ from the datay is the minimization of a free-energy-like quantity,

F(α, γ ) = − log
∑
x

pα(y|x)πγ (x). (8)

Note that the procedure based on themarginal likelihood
∑

x pα(y|x)πγ (x) is successfully
used by many authors in practical problems [11–18]. It is known by many different terms,
e.g. the maximization oftype II likelihood [11, 12], the minimization ofABIC [13], the
maximization ofevidence[14, 15, 25, 26, 43], and, simply, the maximization of the likelihood
of α andγ [16,18]†.

At the moment, we assume that the form of the distributionπγ (x) andpα(y|x) is correctly
known except the values of the hyperparameters. Even in this case, the hyperparameters
(α, γ ) that minimize (8) are random variables dependent on the datay and they fluctuate
around the true values(α0, γ0) of (α, γ ). On the other hand, if we consider the average
[[F(α, γ )]pα0(y|x)]πγ0(x) of F(α, γ ) over the true distributionspα0(y|x) andπγ0(x), a set of
(α, γ ) that minimize the average coincides with the true value(α0, γ0). That is, the inequality

[[F(α0, γ0)]pα0(y|x)]πγ0(x) 6 [[F(α, γ )]pα0(y|x)]πγ0(x) (9)

holds for any value ofα andγ .
If the right-hand side of (9) is a sufficiently smooth function of(α, γ ), the derivatives

of F at (α, γ ) = (α0, γ0) should be zero. For example, the following relations are direct
consequences of (9):[[

∂

∂α
F(α, γ )

]
pα0(y|x)

]
πγ0(x)

∣∣∣∣
(α,γ )=(α0,γ0)

= 0 (10)

[[
∂

∂γ
F (α, γ )

]
pα0(y|x)

]
πγ0(x)

∣∣∣∣
(α,γ )=(α0,γ0)

= 0. (11)

Here, the derivatives∂F/∂α and∂F/∂γ should be interpreted as the derivatives∂F/∂αk and
∂F/∂γk with each component ofα = {αk} andγ = {γk}, whenα andγ are vectors with more

† When the expression of the probabilityp(y|x) is considered as a function ofx with given datay, it is called
‘likelihood of the parameterx’. This terminology is preferred by the non-Bayesians who do not treat the parameter
x as a random variable, but is also used by Bayesians. The mixture distribution

∑
x pα(y|x)πγ (x) at the right-hand

side of (8) can be regarded as the likelihood of the hyperparametersα andγ .
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than one components. The conditions on the second derivatives are also derived from (9) by
using positive semi-definiteness of the Hessian, say,[[

∂2

∂2α
F(α, γ )

]
pα0(y|x)

]
πγ0(x)

∣∣∣∣
(α,γ )=(α0,γ0)

> 0 (12)

which ensure that(α0, γ0) is a relative minimum of the right-hand side of (9).
A simple way to prove (9) is the use of an inequality,∑

z

P (z) log
Q(z)

P (z)
6 0 (13)

whereP(z) andQ(z) are arbitrary functions that satisfy the relations 06 P(z),Q(z) 6 1
and

∑
z Q(z) =

∑
z P (z) = 1. If we setP(y) = ∑

x pα0(y|x)πγ0(x) andQ(y) =∑
x pα(y|x)πγ (x), it is easy to verify the requirement of the inequality (13). Then it follows

that, for anyα andγ ,[[
log

∑
x pα(y|x)πγ (x)∑
x pα0(y|x)πγ0(x)

]
pα0(y|x)

]
πγ0(x)

6 0. (14)

This proves (9) and its corollaries (10)–(12). We can also prove (10)–(12) through direct
calculations similar to that for (5).

The Bayesian framework is an important language in wide areas of the science of
information processing, such as time-series analysis, image restoration, inference with neural
networks and artificial intelligence. An earlier remark on the analogy between Bayesian
statistics and statistical mechanics is found, for example, in Iba [23]. Sourlas [24] seems
to be the first to have discussed the relation between coding theory and spin glasses. For
recent works dealing with the relation between statistical mechanics and Bayesian statistics
(or error-correcting codes), see [25–31,43].

3. The Nishimori line

Now we discuss the relation between the results in the previous section and the Nishimori line
of spin glasses. To see this in the simplest case of±J Ising spin glass, we set the distributions
as follows:

pα(y|x) = 1

Zα
exp(−Eα(x, y)) (15)

−Eα(x, y) = α
∑
(i,j)

yij xixj (16)

Zα =
∑
y

exp(−Eα(x, y)) = (exp(α) + exp(−α))M (17)

and

π(x) = 1

2N
(the uniform distribution) (18)

where each of the componentxi (i ∈ {1 . . . N}) of the parameterx takes the value of±1. The
componentxi is defined on the verticesi of a graphG, say a square lattice or a random network,
of degreeN . The datay = {yij } is defined on the edges(i, j) of G and the summation

∑
(i,j)

runs over them. We denote the number of the edges ofG asM, which is also the number of
the data.
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This probabilitypα(y|x) corresponds to a binary symmetric channel where a set{yinij }
((i, j) ∈ G) of the pair productyinij = xixj of the inputs is sent as an error-correcting
code [8, 10, 24, 28]. Here, ‘binary symmetric’ means that the output of the channelyij is
given by the formula

yij = +yinij with probability 1− q
yij = −yinij with probability q.

(19)

If we assume that the datayij is generated bypα0(y|x) andπ(x) defined by (15) and (18), the
noiseq of the channel is related to the hyperparameterα0 by

q = exp(−α0)

exp(α0) + exp(−α0)
. (20)

Although the ‘pair product code’yinij = xixj defined above looks rather artificial, recent
works [28, 29] on error-correcting codes suggest that its generalization might have practical
importance†.

The posterior distribution of the model with data{yij } and hyperparameterα is

pα(x|y) = 1

Zpos
exp(−Eα(x, y)) (21)

Zpos =
∑
x

exp(−Eα(x, y)). (22)

This is the Gibbs distribution of a random-bond Ising model with coupling constants{yij }
defined on the graphG. A derivative of the functionF defined by (8) is

∂

∂α
F(α, γ ) = 1

α
〈Eα(x ′, y)〉pα(x ′|y) +M · tanhα (23)

where〈 〉pα(x|y) indicates the canonical average with the energyEα(x, y). (Here and hereafter,
we assume that we are working at the unit temperatureT = 1 and α is treated as a
(hyper)parameter of the model but not the temperature.) The termM · tanhα comes from the
derivative of the logarithm of the normalization factor(exp(h) + exp(−h))M of the probability
pα(y|x).

In general, a mis-specification of hyperparameterα in (21) and (23) is possible. In such
cases, the corresponding average of the energy [〈Eα(x ′, y)〉pα(x ′|y)]pα0(y|x)]π(x) is not easy to
calculate. If we consider the case where we know the ‘true’ valueα0 used in the generation of
the data{yij } and setα = α0, or, equivalently,

exp(−α)
exp(α) + exp(−α) = q (24)

in the expression of the average, we have an identity

−[〈Eα(x ′, y)〉pα(x ′|y)]pα(y|x)]π(x) = αM · tanhα. (25)

† Another interesting interpretation of the probabilitypα(y|x) is given by a problem [32] that arises in the analysis
of social network data [33]. With this interpretation, the indexi indicates a person and the binary variableyij ∈ {±1}
(yij = yji ) indicates a social relation between personsi andj , for example, whether they have an acquaintance or not.
Each person is assumed to belong to one of the social groups A or B, and the problem is to infer the group structure
from the data{yij }. We set the indicatorxi = 1 wheni ∈ A andxi = −1 wheni ∈ B and assume the following
property:

If a pair of the personsi andj is in the same social group,yij = 1 with a probabilityq and−1 with a
probability 1−q. Else if they are in different groups,yij = 1 with probabilityq ′ and−1 with a probability
1− q ′.

Then we get the probabilitypα(y|x) in the text as a special case whereq ′ = 1− q.
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from the identity (10) and the expression (23).
So far, the average over the bond randomness

[[ · · ·]pα(y|x)]π(x) (26)

has a rather complicated structure. There are two steps in the generation of the quenched
random variables{yij }, which are described byπ(x) and pα(y|x), respectively. In this
particular case, we can simplify it usinggauge invarianceof the problem. The gauge
transformation group of this model is defined by the family of transformations,

Vz : {yij } → {zi · yij · zj } (27)

Uz : {xi} → {xi · zi} (28)

parametrized byz = {zi}, zi ∈ {±1}. This set of transformations consist of one-to-one onto-
mappings (permutations) of their domain andUz satisfy a transitive property, i.e., there existsz
with whichUz(x) = x ′ for any pair ofx andx ′ in the domain. It is easy to show the following
relations:

pα(Uz(x)|Vz(y)) = pα(x|y) (29)

π(Uz(x)) = π(x) (30)

pα(Vz(y)|Uz(x)) = pα(y|x) (31)

Eα(Uz(x), Vz(y)) = Eα(x, y). (32)

They are an example of the gauge invariance (or gauge covariance) in a random-spin system
( [1, 2, 6, 34], see [5] for a comprehensive treatment with applications to the Nishimori line).
By these formulae, we can show that the left-hand side of the expression (25) is written as a
simpler average

[[ 〈Eα(x ′, y)〉pα(x ′|y)]pα(y|x)]π(x) =
∑
x

∑
y

∑
x ′
Eα(x

′, y) · pα(x ′|y) · pα(y|x) · π(x)

=
∑
x

∑
y

∑
x ′
Eα(Uz(x

′), Vz(y)) · pα(Uz(x ′)|Vz(y)) · pα(Vz(y)|Uz(x)) · π(x)

=
∑
y

∑
x ′
Eα(x

′, y) · pα(x ′|y) · pα(y|x∗)

= [〈Eα(x ′, y)〉pα(x ′|y)]pα(y|x∗) (33)

wherex∗ is a ferromagnetic state{x∗i } (∀i x∗i = 1) and z is a function ofx that satisfy
x∗ = Uz(x). The existence of suchz is secured by the transitive property ofUz and the change
of the dummy index, say, fromVz(y) to y in the summation

∑
y , is justified by the one-to-one

onto property ofVz andUz.
The expression

pα(y|x∗) =
exp(α

∑
(i,j) yij )

Zα
(34)

defines a joint distribution of{yij }, but it is easy to see that the componentsyij are mutually
independent. Each componentyij is a sample from the distribution

Pr(yij ) = q · δ(yij + 1) + (1− q) · δ(yij − 1) (35)

where the relation betweenq andα is defined in (24). Here and hereafter, we denote the average
over the distribution (34) or (35) by [ ]q . By using (33) and these notations, the formula (25)
is reduced to the identity

−[〈E(x, y)〉pα(x|y)]q = αM · tanhα (36)
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on the average of the energy of±J spin glass with the coupling constants{yij } from the
distribution (35). This is nothing but a result reported in the first paper [1] on the Nishimori
line.

The relation (24) between (hyper)parameterα in the canonical average and the noise level
q in the quenched average is essential and known as the definition of theNishimori line† of
the model. In the present derivation, it arises from the conditionα = α0 in formulae (9) and
(10). This means that the modelpα(y|x) assumed in the analysis of the data coincides with the
‘true’ probabilitypα0(y|x) used in the generation of the data. In terms of the coding theory, it
corresponds to the situation where the decoder knows exactly the property of the channel, the
coding, and the relative frequencies of the possible messages.

A similar argument with the substitution of the second derivative∂2

∂2α
F (α, γ ) of F into

the expression (12) leads to the inequality

[[ 〈E2
α(x
′, y)〉pα(x ′|y) − 〈Eα(x ′, y)〉2pα(x ′|y)]pα(y|x)]π(x) 6

α2M

cosh2 α
. (37)

With gauge invariance of the model, we can derive the inequality

[〈Eα(x, y)2〉pα(x|y) − 〈Eα(x, y)〉2pα(x|y)]q 6
α2M

cosh2 α
(38)

from (37). This is an inequality on the fluctuation of the energy (the specific heat) on the
Nishimori line, which is also discussed in [1]. Some of the other relations that hold on the
Nishimori line of the model is derived from the identity (7) and the gauge invariance of the
model. For example, the distribution of the internal fields at the vertexi0 [3] is reproduced,
when we setC(x, y) = ∑j yi0j xj , wherej runs over the set of vertices neighbouring toi0,
i.e.,(i0, j) ∈ G. The expression of the gauge invariant correlation function [1] is also derived,
when we setC(x, y) = xk · (5(i,j)∈0yij ) ·xl , where0 denotes a path that connects the vertices
k andl.

Here we discuss a statistical model defined by (15) and (18), which leads to the Nishimori
line of the±J spin glass model. Our argument is, however, general and can be applied to the
Nishimori line of other models, say, spin glasses with a Gaussian distribution of the coupling [2],
models with multiple spin interactions [5,8,24,28–30], and the gauge glasses [5,9]. For each
model, we can consider the corresponding statistical model (or a noisy channel) and derive the
properties of the Nishimori line from the relations (10), (12), (7) with additional arguments on
the gauge invariance. A problem corresponding to gauge glass might have practical importance
in the analysis of the data from optical measurements where differences of the phase between
neighbouring points are observed with noise [35].

4. What is new?

Now, careful readers may askwhat is really newin our approach. Once the left-hand side of
(25)∑
x

∑
y

(∑
x ′(α

∑
(i,j) yij x

′
ix
′
j ) · exp(α

∑
(i,j) yij x

′
ix
′
j )∑

x ′ exp(α
∑

(i,j) yij x
′
ix
′
j )

· exp(α
∑

(i,j) yij xixj )

Zα

)
(39)

is derived by the gauge invariance from that of (36), it is not difficult to show the relation (25)
by direct inspection of the expression. If we combined these steps of the proof in this order,

† In general cases, where more than one (component of) hyperparameter is contained in the model, it is actually a
‘Nishimori hypersurface’. The termNishimori temperatureis also used by statistical physicists. It seems, however,
inadequate terminology in the context of information processing, because the notion of temperature has no specific
meaning in the problems of the statistics and the coding theory.
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it is nothing but a conventional proof [1,2] of the property of the Nishimori line. The same is
true for the derivations with the identity (7). In this sense, our argument is not a re-derivation
of the Nishimori line but areformulationor re-interpretationof the original derivation.

There are, however, two major advantages of this approach. First, the present interpretation
elucidates the meaning of the Nishimori line. It is a line on which we make inference
(or decoding) using the ‘true’ probability structure that generates the data (or codes). The
coincidence of the encoding and decoding scheme gives drastic simplifications of the averages
of various kind of physical quantities. Prototypes of this interpretation are found in the
studies of finite-temperature decoding [7–10]. In this paper, we further developed the idea
and represent the whole theory of the Nishimori line with this interpretation. Specifically,
we present a novel interpretation to the identity (36) of the energy and the inequality (38).
They are essentially necessary conditions that the average of the marginal likelihood takes the
maximum value on the Nishimori line.

In the conventional derivation [1,2] of the Nishimori line, the insertion of the variablex to
the left-hand side of (36) looks a rather artificial procedure and the expression (39), which is
defined in the configuration space enlarged by a gauge transformation, seems to have no definite
meaning. This lacks of the interpretation is a reason why the derivation of the Nishimori line
looks somewhat mysterious, even though the manipulation of the formula required in the proof
is quite simple and elegant. We believe that the present interpretation will contribute to make
this point clear.

The second advantage of the present approach is that it suggests the existence of
correspondence of the Nishimori line in the modelswithout gauge invariance. Sourlas [10]
argued it in the case of optimal decoding. The notion of the Nishimori line without gauge
invariance is, however, more general. The relations (10), (12), and (7), which are used in the
derivation of the Nishimori line, are obtained without the gauge invariance of the models. By
using them, we can prove the identity of the energy, inequality of the specific heat, and the
expression of the distribution of internal fields etc, which hold on the ‘Nishimori line’ of the
models without gauge invariance.

For example, we consider a Bayesian model

pα(y|x) = 1

Zα
exp(−Eα(x, y)) (40)

−Eα(x, y) = α
∑
i

yixi (41)

Zα =
∑
y

exp(−Eα(x, y)) = (exp(α) + exp(−α))N (42)

and

πγ (x) = 1

Zπ
exp(−Eγ (x)) (43)

−Eγ (x) = γ
∑
(i,j)

xixj (44)

Zγ =
∑
x

exp(−Eγ (x)). (45)

In this case, we assume that the unknown parameters{xi} and the data{yi} are defined on the
vertices of a graphG with the degreeN . WhenG is a two- or three-dimensional lattice and
xi, yi ∈ {±1}, this model corresponds to an image restoration problem with a prior knowledge
on images that is well described by the Ising prior (43). (For image restoration with Ising and
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Potts priors, see [19–22,26,27].) The posterior distribution of the model is

pαγ (x|y) = 1

Zαγ
exp(−Eαγ (x, y)) (46)

−Eαγ (x, y) = α
∑
i

yixi + γ
∑
(i,j)

xixj (47)

Zαγ =
∑
x

exp(−Eαγ (x, y)). (48)

This is the Gibbs distribution of an Ising model with an inhomogeneous external field{α · yi}.
Let us consider the cases where the data generation mechanism is exactly described by

the probabilities (40) withα = α0 and (43) withγ = γ0, i.e., the pattern of the random field
{yi} is given by the following process: (i) Generate a sample pattern{yini } from the Gibbs
distribution of the Ising model (43) with the coupling constantγ0. (ii) Flip each component
{yini } with the probability

q = exp(−α0)

exp(α0) + exp(−α0)
(49)

(a binary symmetric channel). Then, we can interpret the posterior (46) as a Gibbs distribution
of a random field Ising model (RFIM). Note that external fields on the sites of this model are
not mutually independent random variables, but correlated with a way specified by (i) and
(ii). The ‘Nishimori line’ of this model is defined as a surface where the parameters(α0, γ0)

in the definition of the quenched randomness coincide with(α, γ ) in the canonical average.
Equivalently,

exp(−α)
exp(α) + exp(−α) = q (50)

γ = γ0 (51)

whereα andγ are the parameters in (47), andq andγ0 are the parameters in (i) and (ii). Then,
we can prove identities and inequalities that hold on the Nishimori line of this model. For
example, (10) and (5) withA(x) = xixj give the following identities:[[〈∑

i

yixi

〉
pαγ (x|y)

]
pα(y|x)

]
πγ (x)

= N · tanhα (52)

[[ 〈xixj 〉pαγ (x|y)]pα(y|x)]πγ (x) = 〈xixj 〉pureγ . (53)

Here and hereafter, the average〈· · ·〉pureγ is the canonical average with the ‘pure’ Ising model
with homogeneous couplings of the strengthγ on the same graphG. The expression (53)
shows that the quenched average of the correlation of spins in the RFIM with a correlated
random field is just the same as that of the corresponding pure Ising model. Furthermore, an
identity between the order parameters is obtained if we consider a set of systems of the fixed
boundary condition with whichxi = 1 for the all spins at the boundary [2]. Assuming that the
sitej belongs to the boundary and the sitei is located far from the boundary, the relation

[[ 〈xi〉pαγ (x|y)]pα(y|x)]πγ (x) = mpureγ (54)

is derived from (53), wherempureγ is the bulk magnetization per spin of the corresponding pure
system.

Although these results are dependent on the special features of the model, similar
arguments are applicable in other models without gauge invariance and leads to identities
and inequalities on the Nishimori line of the model. An example is provided by the posterior
distribution corresponding to a binary asymmetric channel, which is already discussed in
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Sourlas [10] in the context of optimal decoding. It is related to models with a special type of
site/bond randomness.

There are, however, some intrinsic limitations on the utility of the notion of the Nishimori
line without gauge invariance. First, we cannot simplify the definition of the quenched average
[[ · · ·]pα(y|x)]πγ (x) on the Nishimori line without gauge invariance. Then, the results usually
contain a complicated quenched average, which often lacks a clear correspondence to that in
physical systems. The two-stage process (i) and (ii) of the generation of quenched randomness
in the RFIM described above is a typical example of this. Another important remark is that not
all of the properties of the Nishimori line with gauge invariance are applicable to the models
without gauge invariance. For example, the identity

[〈xi〉pα(x|y) · 〈xi〉pα′ (x|y)]q = [〈xi〉pα′ (x|y)]q (55)

valid for the±J spin glass model [2] has no correspondence in a model without gauge
invariance. Hereα andq is related by the condition (24) of the Nishimori line andα′ takes an
arbitrary value. The identity (55) is important because the upper bound

|[〈xi〉pα′ (x|y)]q | 6 [|〈xi〉pα(x|y)|]q (56)

of the order parameter is derived from it. If we substituteC(x, y) = xi · 〈x ′i〉pα′ (x ′|y) in (7), we
can prove the relation

[[ 〈x ′i〉pα(x ′|y) · 〈x ′i〉pα′ (x ′|y)]pα(y|x)]πγ (x) = [[xi · 〈x ′i〉pα′ (x ′|y)]pα(y|x)]πγ (x) (57)

which apparently corresponds to (55) (here we assume an arbitrary model with binary variables
{xi}, xi ∈ {±1}). However, further simplification of the right-hand side is not possible without
gauge invariance. Unfortunately, the expression (57) gives little information on the shape of
the boundaries in phase diagram and seems not as useful as (55).

5. Finite-temperature decoding

The notion of the optimality of ‘finite-temperature decoding’ was introduced to the community
of statistical physicists by Ruján [7] and discussed by Nishimori [8, 9] and Sourlas [10].
Recently, it has again drawn the attention of researchers of this field, because the development
in statistical mechanics of error-correcting codes [28] enables a quantitative tackling of the
problem with analytical methods.

Roughly speaking, ‘the optimality of finite-temperature decoding’ means that the estimator
that maximizes the posterior probability (maximuma posterioriestimator (MAP estimator))
is not always the best estimator. The best estimator is dependent on the purpose of inference
(or decoding) and often defined with averages over the posterior distribution. If we call the
MAP estimator, which is defined as a ‘ground state’ of the corresponding physical system, the
‘zero-temperature decoder’, it is natural to call an estimator defined with the posterior averages
a ‘finite-temperature decoder’ or ‘T = 1 decoder’ [10].

This fact has been well known in the study of the statistics and pattern recognition. For
example, Marroquin [37] (see also [21, 22, 26]) discussed an estimator (‘MPM estimator’) in
image restoration problems, which is just the same as the one proposed by Ruján [7]. Moreover,
this was not the first work to use the estimator in this field†. General arguments on the optimality
of the estimator in the Bayesian framework is already found in the textbooks [12, 38–41] of
statistics. The branch of statistics that discusses optimal decisions with uncertain information
is known asstatistical decision theory.

† See, for example, [36] and section 2.4 of [19]. A recent paper on the optimal estimator in image restoration is by
Rue [42].
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Here, we will briefly discuss the basic results on optimal estimators. Our treatment is
not very different from the arguments in Sourlas [10] and those in the textbooks of statistics
[12, 38, 40, 41]. It is, however, useful to give a coherent derivation with the notations in the
earlier sections, because no comprehensive treatment of this subject seems available in the
literature of physics.

To give a formal definition of optimal estimators, we introduce the notion of aloss function
L(x, x̂) that gives a measure of distance‡ between the original parameterx and an estimatêx
of x. Then we define an optimal estimatorx̂(y) for a loss functionL as a function ofy that
minimize the expected loss

[[L(x, x̂(y))]p(y|x)]π(x). (58)

Here and hereafter, we assume that we know exactly about the data generation process and
omit the subscripts that indicate hyperparametersα, γ in the expressions, say,p(y|x), π(x)
and〈 〉 (i.e., we set the values of the hyperparameters to their ‘true’ values). Note that the
optimality of an estimator defined here is a very strong notion. It means thatx̂(y) has better or
equal average performance against any function of the datay, provided that the data generation
scheme (or the set of the channel and the frequencies of the messages) is exactly described
by the given probabilityp(y|x) andπ(x). The optimality of aT = 1 estimator in a set of
estimators defined at different ‘temperatures’T is a consequence from the optimality defined
here.

A basic result on optimal estimators is the following lemma.

Lemma. An optimal estimator̂x(y) for a loss functionL is an estimator that minimize the
posterior average〈L(x, x̂(y))〉p(x|y) for eachy.

Proof. The proof of the lemma is as follows [40]†. When we setC(x, y) = L(x, x̂(y)), the
identity (7) gives

[[ 〈L(x ′, x̂(y))〉p(x ′|y)]p(y|x)]π(x) = [[L(x, x̂(y))]p(y|x)]π(x). (59)

Note that the estimator̂x(y) is an arbitrary function ofy and we can freely attribute its value at
eachy. On the other hand, the average [[· · ·]p(y|x)]π(x) in the left-hand side of (59) is an average
overy with non-negative weights. With these properties, we can see that the minimizer of the
left-hand side of(59) is the minimizer of the posterior average〈L(x ′, x̂(y))〉p(x ′|y) for eachy.
Thus, the lemma is proved. �

For example, consider the case where the distanceL between the binary sequencex = {xi}
and x̂ = {x̂i} (xi, x̂i ∈ {±1}) is measured by the overlap

∑
i x̂ixi of the pattern, i.e.,

L(x, x̂) = −∑i x̂ixi . With this loss function,

〈L(x, x̂(y))〉p(x|y) = −
∑
i

x̂i (y)〈xi〉p(x|y) (60)

where x̂i (y) is the ith component of an estimator̂x(y). Then, the optimal estimator
x̂i (y) ∈ {±1}, which minimizes the right-hand side of (60), is given by

x̂i (y) = 〈xi〉p(x|y)|〈xi〉p(x|y)| . (61)

This expression coincides with the result in [7,8,10,18,21,22,37]. Examples of loss functions
and the corresponding optimal estimators are shown in table 1. By using the lemma, we can
easily derive them.

‡ It is not necessary to satisfy the axiom of the distance.
† Essentially the same, but slightly simpler proof is found in [38]. The present style of the proof has the advantage that
it suggests an estimate of the loss with an estimatorx̂(y), i.e., the identity (59) justifies the use of〈L(x, x̂(y))〉p(x|y)
as an estimator of the loss.
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Table 1. Loss functions and corresponding optimal estimators. If there are no special comments in
the table, a component of parametersxi takes its value in a subset ofR and and an estimatêxi of xi is
assumed to take its value inR. The symbol〈 〉 indicates the average over the posterior distribution.
The expression arg maxz f (z) indicates a value ofz that maximizesf (z) and Kronceker deltaδw,z
is defined as usual, i.e.,δw,z = 1 if w = z, elseδw,z = 0.

Loss function(L) Optimal estimator(x̂) Comments∑
i (xi − x̂i )2 x̂i = 〈xi〉∑
i |xi − x̂i | x̂i = median ofpi(xi )a

1−∏i δxi ,x̂i {x̂i} = arg maxx p(x|y)b xi : a discrete variable∑
i (1− δxi ,x̂i ) x̂i = arg maxxi pi (xi )

a xi : a discrete variable

−∑i xi x̂i x̂i = 〈xi 〉
|〈xi 〉| x̂i ∈ ±1

−∑i{xi log x̂i + (1− xi) log(1− x̂i )} x̂i = 〈xi〉 0< xi , x̂i < 1

a Herepi(xi ) indicates the marginal distributionpi(xi ) =
∑
{xj }j 6=i p(x|y) of xi , where

∑
{xj }j 6=i

means the summation overx with a fixed value of theith componentxi .
b It is often called the ‘MAP (maximuma posteriori) estimator’.

So far, our discussion in this section does not depend on the notion of gauge invariance.
Correspondences between loss functions and optimal estimators shown in table 1 are
independent of the existence of gauge invariance of the model. With gauge invariance, we can
prove an additional result. Let us assume that the model is gauge invariant and the following
properties of the loss functionL and the estimator̂x(y)

L(Uz(x), Uz(x̂)) = L(x, x̂) (62)

Uz(x̂(y)) = x̂(Vz(y)) (63)

are satisfied for allz (the mappingsVz andUz are defined in section 3). Then, we can show
that the expected loss [L(x, x̂(y))]p(y|x) with any fixedx is independent of the value ofx. The
proof ( [12] p 396, [41] p 168) is as follows:

[L(x, x̂(y))]p(y|x) =
∑
y

L(x, x̂(y)) · p(y|x)

=
∑
y

L(x∗, Uz(x̂(y))) · p(Vz(y)|x∗)

=
∑
y

L(x∗, x̂(Vz(y))) · p(Vz(y)|x∗)

=
∑
y

L(x∗, x̂(y)) · p(y|x∗)

= [L(x∗, x̂(y))]p(y|x∗) (64)

wherex∗ is an arbitrary chosen ‘standard’ configuration, say a ferromagnetic state, andz is
chosen to satisfy the relationx∗ = Uz(x). The result (64) means that the estimator performs
equally well for any value of the original parameterx. In terms of statistics [41], an estimator
that is optimal within the class of the estimators with such uniformity is called a minimum risk
equivariant estimator (MRE)†. The case discussed in Ruján [7] and Nishimori [8] corresponds
to a special example of MRE.

In fact, we can remove the assumption (63) on the estimator, if the estimator is optimal
and the optimal estimator is known to be unique. This means that if the loss function is gauge

† The term ‘invariant’ is also used. The author prefers ‘covariant’, but does not know whether it has been used by
statisticians. Here we restrict ourselves within the special form ofUz andVz induced by the gauge transformation
group of Ising spin glass. See [12,41] for definitions and results with an arbitrary group of transitive transformations.



The Nishimori line and Bayesian statistics 3887

invariant, the corresponding optimal estimator is automatically gauge covariant and satisfies
(63)†. The proof is easy, if we note that the estimator defined by

x̂z(y) = U−1
z (x̂(Vz(y))) (65)

is an estimator of the equal performance to the original estimatorx̂(y), i.e.,

[[L(x, x̂z(y))]p(y|x)]π(x) = [[L(x, x̂(y))]p(y|x)]π(x). (66)

The relation (66) is confirmed by the calculation similar to that in the proof of (64) under the
assumption of (62) and the gauge covariance ofp(y|x) andπ(x). Thus, with the assumption
of the uniqueness of the optimal estimator,x̂z(y) should coincide withx(y) for any value of
z. It proves the relation (63).

6. Summary

In this paper, we presented a reconstruction of the theory of the Nishimori line from the
viewpoint of Bayesian statistics, or, from the viewpoint of the theory of error-correcting
codes. We have developed the idea suggested in the studies of finite-temperature decoding
of error-correcting codes [7–10] and explicitly shown that the properties of the Nishimori
line are coherently understood with this interpretation. As a byproduct of the interpretation,
counterparts of the Nishimori line in models without gauge invariance are given. We also
discussed the issues on the ‘finite-temperature decoding’ of error-correcting codes and clarified
the role of gauge invariance.
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